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Abstract—Driving simulation allows the creation of virtual
realities that are highly immersive, safe, controlled, and repeat-
able. Its use is seen throughout the entire design process of a
vehicle, from virtual calibration to validation of systems and
components. It reduces the cost and time consumed in testing
and prototyping. Besides being used to develop vehicular systems,
driving simulation is a great tool for studying the drivers. Driver
behavior is a factor that greatly influences, energy consumption,
vehicle dynamics, component wear and safety. By identifying
the driver style and behavior, inteligent and connected systems
can adapt and perform their tasks with customizable driver-
centered calibrations. This work proposes the guidelines to create
and conduct driving simulation experiments with the purpose of
designing learning algorithms for driver behavior classification.
The necessary hardware and software capabilities are outlined
and a list of significant influencing factors and features are
presented. The relevant driving data is also discussed and the
tools to label it are presented in detail. A pilot study is conducted
using long short-term memory (LSTM) artificial neural network
(ANN) to classify the driver behavior between low, medium
and high aggressive. The features used were the gradients of
the driver controls and the vehicle longitudinal and lateral
accelerations. Results show accuracy of 94.62% of the learning
algorithm after a 8-minute training with 558 observations of
10 seconds each. The observations included driving data in
residential and highway scenarios. The results show the method is
promissing and the prospect is that this type of algorithms could
be implemented in real-time with systems such as autonomous
driving, energy management, and vehicle stability.

Index Terms—driver style, driving simulation, machine learn-
ing, virtual reality.

I. INTRODUCTION

THE advent of computer-aided engineering (CAE) enabled
the automotive industry to shorten the vehicle design

process, remove cost, and to improve the performance of
systems and components. In the simulation world, components
are exchanged or edited easily, and the test cases are consis-
tent and repeatable. This allows for reducing the number of
prototyped components, rapid-effective calibration of systems,
and coherent definition of performance parameters. It also
makes it easier to compare different vehicles in a back-to-back
mode. This has been a challenge previously. Nevertheless, a
key factor to be considered is the human component. The way
drivers execute driving tasks (e.g. drive away, stops, cornering,
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lane changes, etc.) impacts considerably the vehicle dynamics,
component wear, and energy consumption.

To fill this void and keep up with the increasing speed
of virtual vehicle design, driving simulators are introduced.
Driving simulators come in a number of varieties made up
of both hardware and software. The hardware enables the
type of driving immersion that is commiserate with where
the vehicle is in the engineering process. These range from
simple desktop systems that consist of a steering wheel and
pedals in a cubical to a full vehicle cockpit on a multi-degree
of freedom (DOF) platform that requires its own site and
infrastructure. All simulators capture real driver inputs, imitate
the response of a road vehicle in real-time, accounting for
that driver’s perceptual system. From a software standpoint
driving simulator usually consists in vehicle dynamics model,
scenario builder, kinematics algorithm, visual, auditory, haptic,
and motion cues [1].

In a driving scenario, the driver is the operator that provides
commands. The vehicle is the mechanism that responds dy-
namically. The term driver behavior is used as to classify the
style in which the driver provides the inputs when conducting a
driving task.The following studies show how driver behavior is
directly linked to energy consumption [2], [3], and [4], motion
stability [5], and safety [6] and [7].

Since simulators provide a protected environment for oth-
erwise safety-risk testing scenarios, their use for the testing of
human-machine interfaces (HMI) and connected/autonomous
(C/A) systems has been increased over the years. Experiments
include the evaluation of driver interaction with secondary
devices (such as touchscreen monitor and steering wheel
controls) [8], driver-machine transitions for automated driving
systems [9], and the assessment of interfaces that enhance trust
between passengers and autonomous driver systems [10].

In addition, driver behavior is subject of study of several
works. In [11] a compact simulator is used to evaluate the
behavior of the drivers at traffic light intersections. In [12], a
driver performance index is proposed based on reaction time,
aggressiveness, skill, and vehicle jerk.

Several parameters that influence driver behavior are re-
viewed in [13] and divided between environmental factors and
human factors. The work also provides a survey on driving
style recognition methods. It reviews the sensors and inputs
usually used, the classes in which the drivers are divided, and
the different algorithms. It also highlights the importance of
the environmental conditions and human factors. Methods used
for classifying driver style include rule-based (RB) [14], fuzzy-
logic (FL) [15], Gaussian mixture model (GMM) [16], and
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hidden Markov model (HMM) [17] and [18].
Given the difficulty of stablishing rules and complexity

in developing models that generalize the driver style and
behavior, rule-based methods (RB and FZ) and model-based
methods (GMM and Markov chain) are increasingly being
replaced by machine learning (ML) algorithms, especially in
the form of artificial neural networks (ANN). The ANNs
are adaptive, flexible, deal well with large amount of data
and do not require previous knowledge of the system. A
comprehensive comparative study of different types of ANNs
for driver behavior classification is performed in [19].

In [20], a shallow learning ANN acchieves accuracy of
90% in classifying the driver style with three features: driver’s
throttle, vehicle acceleration, and velocity. In [21], another
shallow learning algorithm leveraging support vectoring ma-
chine (SVM) and fuzzy c-means (FCM) is applied with more
than 44 features extracted from the drive cycle to achieve
accuracy of 92.86%. Bayes network is also applied as showed
in [21] to estimate driver’s lane change intent through driving
style. In this work, the accuracy of the estimations is 78.2%
using festures that include time to collision and time gap
between ego and front vehicle. The work in [22] investigates
the benefits of using deep learning over shallow learning
algorithms for classic machine learning based structures. By
adding hidden layers the accuracy of the ANN improves from
70.1% (one hidden layer) to 99.8% (25 hidden layers). The
features used included the linear and the rotational acceleration
of the vehicle in the three axis (longitudinal, lateral, and
vertical). Finally, the authors of [23] develop a residual convo-
lutional network (RCN), using steering wheel angle, vehicle
velocity, engine load, and speed to perform the driver style
classification. This method showed accuracy of 99.3%.

Artificial neural network algorithms require large amount
of training data, though. And it is important to account for
the driving influencing factors and conditions in the test cases
so there is no bias in the final algorithm. Also relevant is the
selection of input signals that will be used for the training and
prediction.

In the present work, we stablish the guidelines for creating
driving simulation studies in which driver behavior classi-
fication algorithms can be developed. From the literature
review, we conclude that besides being immersive, the virtual
reality created in the simulation should support the testing of
diverse demographics, realistic environments, various driving
conditions, and tasks. Furthermore, the learning algorithm
should be preferably a deep learning algorithm with the ability
to leverage present and past information.

II. DRIVER BEHAVIOR INFLUENING FACTORS

In this section, we analyze in detail the influencing factors
on driver behavior as to define the appropriate test cases for
the development of classification algorithms.

A. Enviroment
The term environment is used to describe the surroundings

in which the subject driver is inserted. Here, we subdivide
the environment in four categories: highway, commercial area,
residential area, and proving ground.

1) Highway: Highway is the term used for express roads
that connects towns or cities. Commuting using highways is
part of the day of many drivers, hence the importance of testing
under this environment. In addition, given its usual high-speed
characteristic and presence of traffic, accidents on highways
tend to be more impactful.

2) Comercial Area: This group includes areas where com-
mercial activity takes place so there is a high traffic of
pedestrians and vehicles. Examples are city centers and open
markets. Although less fatal, the number of accidents tends to
be higher in this type of environment.

3) Residential Area: These are neighborhood areas such as
suburbs. The speed limits, traffic of vehicles and pedestrians
are usually lower when compared to commercial areas. Nev-
ertheless, level of distraction can be higher. The driving tasks
in residential areas are similar to the commercial areas.

4) Proving ground: This environment includes race tracks
and test facilities. They can be closed circuits, tracks that
imitate real roads, large, paved areas for free testing, or areas
marked with specific geometry such as circles, ovals, and
straight lanes. Proving grounds are broadly used in industry
since they provide a relatively repeatable and controlled envi-
ronment for testing. For that reason, they are adopted specially
for the testing of safety-related systems such as electronic
stability control (ESC) and advanced driver assistance systems
(ADAS).

B. Conditions

The conditions of each environment also play an important
role in driver behavior. Here we subdivide the conditions into
traffic, weather, lighting, and road quality.

1) Traffic: The number and flow of vehicles in an environ-
ment. Higher traffic conditions are more prone to accidents
while lower traffic conditions are less.

2) Weather: This condition is associated directly with tire
grip and visibility. In sunny-dry conditions, the vehicle is more
responsive to driver actions (due to higher grip), requiring
less skill in emergency situations. In rainy-wet conditions,
vehicle response becomes less intuitive and driver skill is key
in emergency scenarios. The impact is even higher for snowy-
ice situations. Wind conditions might be also accounted for
when in higher levels.

3) Lighting: Decent lighting level is key for performing
driving tasks [24]. Lighting can be associated with weather
conditions (sunny-bright, rainy-cloudy and fogy). In addition,
time of the day also influences lighting (day, night), and even
traffic (glare from opposite vehicle’s headlights).

4) Road: This group of conditions is with respect to the
type, and quality of the pavement. It includes rough roads,
concrete, tarmac, asphalt, stone, among others. Also, the road
condition and slope influences driver behavior.

C. Task

The driving tasks are the missions, or the instructions
assigned to the testing subject (driver). Table I depicts a
diagram of driving tasks associated with the previous listed
environments that can be used for the design of experiments.
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TABLE I
DRIVING TASKS ASSOCIATED WITH ENVIROMENTS

Environment Driving Task

Highway Merging
Exiting
Lane Change
Overtaking
Collision Avoidance
Cornering
Cruising
Speed Reduction
Speed Increase
Pull over
Sudden Stop

Commertial Area Stop at Traffic Light
Stop at Crosswalk
Drive Away
Yield
Right/Left Turn
Parking

Residential Area Stop at Traffic Light
Stop at Crosswalk
All-way Stops
Drive Away
Yield
Right/Left Turn
Parking
U-turn

Proving Ground Constant Speed Cornering
Constant Speed Cornering
Acceleration Maneuver
Deceleration Maneuver
Right/Left Turn
Swerve
Circuit lap

Note that the driving task is usually environment and
sometimes condition specific. For instance, a U-turn is not
allowed in a highway environment, therefore it is not listed as
a highway driving task.

III. APPARATUS

Driving simulators consist in a combination of hardware and
software that, given real driver inputs, imitate the response of a
road vehicle in real-time, accounting for the driver’s perceptual
system. A driving simulator usually consists in vehicle dy-
namics model, scenario builder, kinematics algorithm, visual,
auditory, haptic, and motion cues. All of which explained in
detail in [1].

A. Hardware

The hardware side includes the driver controls, display,
sound, motion, and force-feedback systems. Driving is in its
essence a visual task. Therefore, visual and motion cues must
be set-up correctly and tuned to the simulator so the driver can
get the best possible immersion and provide the best possible
subjective evaluation.

Regarding the visual cues, there are three prime tech-
nologies. The first is providing the image through screens.

Although usually the cheapest solution, screen edges and
low field-of-view contribute to lesser immersion. Rounded
screens, powered by high frequency projectors are the most
adopted solution for driving simulators. Their large field-of-
view is provided by the screen conicity and digital warping and
blending of the different projections. Although they require
dimmed environments (which is not always the case in the real
world), they provide a highly immersive visual environment
since they are proved to give a better perception of velocity and
surroundings [25]. Last, head-mounted virtual reality devices
have gained momentum in recent years. Their easiness of
transport, store, and use make them the most versatile. In
addition, the possibility of a complete field of view enhances
the immersion. Their main disadvantage is the invasiveness of
adding an apparatus to the driver’s head and loss of velocity
perception [26].

Besides the graphic display, the sound system and distribu-
tion is also important to create immersiveness, velocity per-
ception, and driver awareness [27]. The state-of-the-art driving
simulations opt for three-dimensional (3D) sound systems with
speakers distributed inside the vehicle cabin [28].

In motion simulators (also called dynamic simulators) a
motion system is part of the hardware. Motion simulators
include mid- and high-fidelity apparatuses, depending on the
number of DOF their systems provide [29], the most common
being the hexapod with 6-DOF [28]. Redundancies in some
degrees of freedom may also be applied to enhance the motion
evelope, especially in the longitudinal and lateral direction.
Examples are found in [30] and [31] (8-DOF), and in the 9-
DOF Driver in Motion (DiM) structure detailed in [32], [33],
and [34]. Some simulators also count on haptic actuators, such
as force-feedback steering, active belts and seats.

The different apparatuses combined, contribute to the level
of immersion provided by the simulator. That immersion is
key to build trust in the reality presented.

B. Software
In essence, the software creates the inputs that will interact

with driver through the hardware. Given the importance of
the visual and sound cues to create driver imertion, the virual
reality software is of great relevance. The virtual reality soft-
ware must allow not only the creation of realistic enviroments
but also the edit of the conditions. The VI-WorldSim is a
graphic environment that allows for easy control of start/stop
operations, run time control of lighting, time of day and
creation of scenarios the driver needs to react to [35]. Including
features like traffic, pedestrians, lighting, weather, and sensor
enables the user to create anything from simple to complex
scenarios that test the functionality of controls and algorithms.
Using a high-quality graphics environment, built on an unreal
graphics engine, it allows a significantly improved immersive
subjective feel and drive. The closer to reality the driving
experience in the simulator the better the feedback on the
vehicle performance and the driving data measured. It also
allows for building enviroments from scanned surfaces and
actual road profiles that may be used for physical testing, it
further connects the simulator to what will eventually be an
actual test drive for enventual system validation.
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Fig. 1. Residential area and highway scenarios created with VI-WorldSim
graphic enviroment

The creation of scenarios consists in selecting the envi-
ronment, defining conditions, and placing the traffic agents
(pedestrians and vehciles). The software counts on a vast
library of agents, including vehicles of all purposes, makes,
and models and pedestrians from a wide range of demo-
graphics. The computer-controled agents can be programmed
to act and behave with different levels of aggressivity, their
trajectories can be defined by routes or they can be set to
wander. Other functions allow to manage the traffic and trigger
events. Figure 1 shows the quality of the graphics achieved
with VI-WorldSim.

Many high-quality driving simulators include playback of
real noise and vibration data synced in phase with the vehicle
velocity and engine rotational speed being driven in the
simulator. This source data can come from physical test in
the case of production vehicles or from simulation sources
in the case of protype or pre-production vehicles. Road, tire,
and powertrain noise, coupled with aeroacoustics wind noise
provides even more context to the driving experience and
vehicle operation.

To add additional immersion and context an accurate noise
and vibration (NVH) model can be coupled to the vehicle
performance model inside the simulator. This allows for a
more immersive drive and is representative of how drivers
perceive the actual vehicle. Providing the right amount of NVH

Fig. 2. MARCdrive lab from outside (top) and inside the vehicle cabin
(bottom)

context puts the driver in correct cognitive mode to perceive
the vehicle. These models can be complex and broken down
into many different sources and cascade the various transfer
paths and sources in the vehicle and this would make sense
for a pure subjective ride and feel drive, but for our current
type of work a more simplistic model that plays wind/road
and powertrain noise signals to the driver.

A vehicle model that performs realistically with the driver
inputs is also needed to generate realistic vehicle responses to
driver commands. That is key for achieving driver immersion
and accurate classification algorithms. VI-CarRealTime is a
software that enables the creation of vehicle models by includ-
ing information about the body, suspensions, wheels, brake,
steering, and powertrain [36]. The 14-DOF of the model are
achieved by the linear and rotational motion of the body in
all three dimensions (6-DOF) and the vertical and rotational
motion of each wheel (2-DOF per wheel). The tire model is
the Pacejka [37]. It computes forces and momentum in all
three directions in addition to relaxation.

The vehicle model is also the provider of the input signals
for the ANN training and testing.

C. MARCdrive

An exemple of driving simulator is is located at the Mc-
Master Automotive Resource Centre, Hamilton-Canada. The
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MARCdrive lab depicted in Fig. 2 houses a static simulator.
The complete vehicle cabin faces a cylindrical screen with 210
degrees of field-of-view that is powered by three projectors at
120 Hz. The three-dimensional surround system is provided
by speakers distributed by the vehicle cabin. Soft handling
motion cues are enabled by active seat and seatbelts. Haptic
feedback is given through the active steering.

The virtual scenarios are created using the previously pre-
sented VI-WorldSim and the vehicle models are built using
VI-CarRealTime.

IV. METHODOLOGY

The methodology consists in: defining the test cases that
better suit the application, executing the test, collecting, and
post processing the data that will be used by the driver
behavior classification algorithm.

A. Scenarios

The term scenario refers to the combination of environment,
conditions and driving task presented to the driver on the
driving simulator. Depending on the application, some envi-
ronments and conditions might be suppressed. For instance,
in a take-over maneuver (autonomous driver to human driver
and vice versa) that is only enabled in highway roads, the
developer should focus on highway scenarios. The objective
of running scenarios is to obtain driving data for training and
testing of the algorithms.

B. Driving Data

To perform the driver classification it is important to care-
fully define the inputs to the algorithm. Driver controls are
given through the pedals, steering wheel, shifter, and clutch
(last two for manual vehicles). The vehicle responds dynam-
ically with longitudinal, lateral, and vertical accelerations.
Therefore, driver controls and vehicle response are key to
analyze driver behavior.

Previous works have focused on using the vehicle response
to classify driver behavior [38] and [39]. Although driver
controls are signals available in the vehicle network, using
them for the same task is not yet explored. The relevant
inputs signals for driver behavior classification algorithms are
depicted in Table II.

The inputs in Table II must be provided by the vehicle model
embedded in the real-time simulation apparatus, preferably in a
similar fashion as in the real vehicle network, so the algorithm
designed in the simulation environment is easily transferable
to a real vehicle.

In addition, the size of the logged data might be different
depending on the length of each scenario devised. To avoid
biases towards longer scenarios, it is recommended to partition
the driving data in even time-series segments. That is called
segmentation of the data and each segment is called an
observation.

TABLE II
INPUT SIGNALS FOR DRIVER BEHAVIOR CLASSIFICATION

Type Signal

Driver Controls Throttle Pedal Position
Brake Pedal Position
Steering Wheel Angle
Gear Engaged (manual vehicles)
Clutch State (manual vehicles)

Vehicle Response Longitudinal Velocity
Longitudinal Acceleration
Longitudinal Deceleration
Lateral Acceleration
Vertical Acceleration
Brake System Pressure
System-specific

C. Defining Driver Behavior

The most common distribution of classes for driver behavior
includes styles from aggressive to non-aggressive [13] and
[19]. The aggressiveness of the driver is often perceived
not in the magnitude of the command, but in the rate of
change in its value. For instance, during a parking event the
magnitude of the steering wheel angle assumes high values,
even if performed by a non-aggressive driver. In contrast, in an
aggressive lane change maneuver, the magnitude of the same
signal is much lower. Hence, using the magnitude of the driver
controls could mislead the algorithm. By using the rate of
change in the controls (throttle gradient, brake pedal gradient,
and steering wheel angle gradient) that issue is mitigated.

Furthermore, an observation might show different levels of
aggressiveness for each control, e.g., a emergency braking
maneuver with the vehicle going straight (no steering wheel
input). Therefore, the labeled aggressiveness should vary ac-
counting for the different levels of aggressiveness at each
control.

D. Clustering

For classification algorithms, it is necessary to define the
different classes and label the data to enable the training the
ANN algorithm. To avoid biases, manual labelling of driving
tasks is not recommended when the class needs interpretation
(e.g. aggressivity). The k-means clustering is an unsupervised
learning method that uses vector quantization to partition a
number of observations into a predefined number of clusters
(or classes). The algorithm defines each clusters position by
creating centroids and an observation belongs to the cluster
with the nearest mean to that centroid [40].

An example of the application of a k-means algorithm is
given in Fig. 3. Maximum longitudinal velocity and accelera-
tion are extracted from each observation, during driving mis-
sions on highway and residential area scenarios. The measured
data is scattered in the plot and the k-means algorithm labels
each sample without knowing its origin. The figure shows
how the k-means algorithm is effective in assigning each
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Fig. 3. Comparison of k-means and manual labelling of two different
enviroments using longitudinal velocity and acceleration as features

observation to the correct cluster. Overall, high-speed and low-
acceleration measurements belong to the highway scenarios
and low-speed high-acceleration measurements belog to the
residential area scenarios. In this particular example manual
labelling is not complex, but for less intuitive labelling such
as level of aggressiviness, the k-means is a powerful tool.

E. Training and Validation

With the k-means clustering algorithm, different discretiza-
tions of relative aggressiveness can be obtained. Once each
observation is automatically labeled by the clustering algo-
rithm, it is ready to be used for training the neural network.
Once all observations are labeled, the data set is ready for
training.

The observations are randomly selected as training or val-
idation data. The amount of training data is 75% and the
validation data, the remaining 25%. The test data is equal to
the validation data.

F. Machine Learning Algorithm

Lastly, it is important to define which type of algorithm and
structure will be used to perform the driver behavior classifica-
tion. As the literature reviewed in the introduction, supervised
deep learning algorithms have shown better performance. It is
also imporant to account for some chacteristics of the problem
when choosing the ANN topology. In this case, the inputs are
time-series signals, and the outputs are categories (levels of
aggressiveness).

Furhtermore, it is reasonoable to assume that driver behavior
is affected by current and past situations presented to the
drivers in the scenario, i.e., aggressivity might build up or
smooths down over time.

V. PILOT STUDY

This section applies the previously defined guidelines to
exemplify the design of a driver behavior classification. For

the driving data acquisition, the MARCdrive driving simulator
was used. The vehicle model is representative of a small-sized
electric city car which is created using VI-CarRealTime and
Matlab/Simulink [41]. The driving data measured from the
model is the driver controls and the output vehicle responses
as defined in Table II. The objective is to create an algorithm
that accurately classifies driver behavior between three levels
of relative agrressiveness.

A. Experiments

For this pilot study, the scenarios built on the driving
simulator account for two influencing factors, environment
(highway and residential) and traffic (with and without). Table
III summarizes the scenarios created for the pilot studies.

Five drivers are subjected to the scenarios. For the scenarios
with traffic, the behavior of the computer-controlled pedestri-
ans and vehicles is set to “wander” and “swarm”, respectively.
That means that the pedestrians will walk around the map and
their interaction with the human-driven vehicle is incidental.
As for the vehicles, the “swarm” function means that they will
be constantly placed around the human-driven vehicle in order
to create the perception of traffic.

Most of the driving tasks are “incidental” since they de-
pend on driver’s decision and interaction with the computer-
controlled agents. Some driving tasks though, are “imposed”
since they are part of the instructions given to the driver.
Specific instructions are given for scenarios HW 02, RS 01,
and RS 02. In HW 01, the driver is simply told to drive for
the duration of 10 minutes. The instructions are necessary
in scenario HW02 to make sure the driver performs all the
key driving tasks for the highway scenario without traffic. As
for the scenarios RS01 and RS02, instructions are necessary
to guide the driver throughout the mock-up residential area.
Table IV details the instructions given for all four scenarios.
In all scenarios, the drivers are told to drive and comply to the
driving regulations as they would in a real-world experiment.

Driving data is logged at a sampling frequency of 100 Hz.
All the data for all drivers and scenarios are combined and
then segmented in observations that have equal lenght of 10
seconds.

B. Labelling Mehtod

Driver style is assessed in this pilot study from the perspec-
tive of aggressiveness in a scale from 1 to 3, 1 being the lowest
level of relative aggressiveness and 3 being the highest. As

TABLE III
PILOT STUDIES SCENARIOS AND INFLUENCING FACTORS

Environmnet Condition Scenario ID

Highway with traffic HW 01
without traffic HW 02

Residential Area with traffic RS 01
without traffic RS 01
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TABLE IV
INSTRUCTIONS GIVEN FOR EACH SCENARIO

Scenario Task

HW 01 Free driving
Duration: 10 min

HW 02 Merge to highway
Lane change: left
Lane change right
Cruising (1 min)
Speed Increase: +20 km/h
Speed Decrease: -20 km/h
Pull over
Duration: 6 min

RS 01 and RS 02 Full stop
At intersection: turn left
At intersection: turn right
At traffic light: turn left
At intersection: turn right
At intersection: turn right
At intersection: turn right
At traffic light: turn left
At intersection: keep straight
At intersection: turn right
At the end of the road: park
Duration: 2 min

mentioned before, the aggressiveness of the driver is peceived
through the gradient of the action on the controls (steering
wheel, brake pedal, and throttle) as well as in the respective
vehicle dynamic response (lateral acceleration, longitudinal
acceleration, and longitudinal deceleration, respectively).

A first-level k-means clustering algorithm is used here for
labelling the level of aggressiveness of the drivers at each
control, individually. For each control, the same three levels
of relative aggressiveness are considered: low, medium, and
high. The driver inputs considered are the gradients of the
controls. The gradients indicate the rate of change of the driver
inputs and are more representative of the agressiveness of the
driver. Therefore, for each observation, the maximum value
of the steering wheel angle gradient, brake pedal gradient,
and throttle pedal gradient is saved and the respective vehicle
response with it.

As for the the overall aggressivenes of the driver, that should
be the combination of the indexes generated for each control.
In the end, there will be 27 possible combinations (33 = 27).
Those combinatios are used as inputs to the second-level k-
means algorithm that will then define the boundaries of the
three classes of overall level of relative aggressiveness of the
driver.

C. Long Short-Term Memory Recurrent Neural Network

Here, the long short-term memory (LSTM) recurrent neural
network (RNN) algorithm is investigated. The LSTM RNN is
indicated when it is necessary to model long sequences with
long term dependencies [42]. Applications in the automotive
field can be found in [43] where LSTM is used for battery
state of charge prediction. Despite being a RNN, the usual
long-memory limitation (caused by gradient shrink in the back

TABLE V
LSTM PARAMETERS

Overall Parameters

Features Steering Wheel Gradient
Brake Pedal Gradient
Throttle Gradient
Longitudinal Acceleration
Longitudinal Deceleration
Lateral Acceleration
(total: 6)

Responses Low Aggressiveness
Medium Aggressiveness
High Aggressiveness
(total: 3)

Number of Hidden Units 10

Training Parameters

Number of Training Observations 558
Number of Test Observations 186
Max Epochs 200
Gradient Threshold 0.01
Initial Learning Rate 0.1
Learn Rate Drop Factor 0.5
Learn Rate Drop Period 100

propagation learning) does not apply to the LSTM [44]. This
ability is especially relevant for driver behavior classification.

Table V shows the parameters used for the LSTM learning
algorithm. The layers of the classification algorithm consist
of input layer, LSTM layer (with 10 hidden units) a fully
connected layer, a SoftMax function layer, and a classification
layer. The input layer is responsible for receiving the time-
series data from the observations. The LSTM layer creates
the structure for the long-term learning algorithm. The fully
connected layer reduces the output vector to the number of
clusters previously defined. The SoftMax function computes
the output belongings and the classification layer assign it
to the cluster of equals. The data from the second-level k-
means algorithm is used as the label for the driver behavior
classification algortihm.

D. Results

This section assesses the results of the labelling method,
driver behavior classification algorithm, and the classification
of aggressiveness at individual controls.

1) Labelling Algorithm: The labelling method used two
levels of the k-means algorithm. The first defines the level of
relative aggressiveness for each driver control and the second
defines the clusters for the overall driver behavior. Figures 4,
5, and 6 show the clusters for the agressiveness at the steering,
brake pedal, and throttle, respectively.

Then, the second-level k-means clustering takes the outputs
of the first level as features. Figure 7 shows the clustering
results for the 27 possible combinations of the aggressiveness
of each control and the results of the logged data after first
and second level of clustering. It is possible to see that the
data measured from the experiments fills almost every spot
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Fig. 4. Levels of aggressiveness at the steering wheel. Features are the
gradient of the steering wheel angle (x-axis) and lateral acceleration (y-axis)

Fig. 5. Levels of aggressiveness at the brake pedal. Features are the gradient
of the brake pedal position (x-axis) and longitudinal deceleration (y-axis

(96.3%) of the predefined possible combinations of the levels
of aggressiveness from the controls.

Once the data is labeled, we can train and test the learning
algorithm.

2) Driver Behavior Classification Algorithm: After 8 min-
utes and 31 seconds of training the LSTM ANN is able to
perform the driver behavior classifications with accuracy of
94.62%. This performance is remarkable considering the short
training period and the size of the ANN. The test data is
classified within 0.45 seconds. Considering the the test data
contains 186 observations, the average prediction time is 0.002
second for predicting the driver behavior of an observation that
is 10 seconds long.

3) Classification of Aggressiveness at Individual Controls:
In addition to the previous algorithm, the same LSTM ANN
structure was trainned with the same observations to identify
the level of aggressiveness at each control individually, i.e.,
steering wheel, brake pedal, and throttle. For that test, the

Fig. 6. Levels of aggressiveness at the throttle. Features are the gradient of
the throttle position (x-axis) and longitudinal acceleration (y-axis)

Fig. 7. Levels of overall driver aggressiveness. The ’o’ terms are defined
from the combinations of the aggressiveness of the controls and the ’+’ terms
are clustered observations from the driving data measured. Features are the
previously defined levels of aggressiveness at steering wheel (x-axis), brake
pedal (y-axis), and throttle (z-axis)

labels used are straight from the first-level k-means algorithm
and the input features to the LSTM ANN are the same used
for the clustering method. The trained algorithms achieved
99.46%, 100%, and 98.92% of accuracy for the identification
of the aggressiveness at the steering wheel, brake pedal, and
throttle, respectively. That shows how easier it is to identify
the aggressiveness at an individual control compared to overall
driver aggressiveness.

Such individualized approach might be particularly usefull
for energy management systems and chassis control systems
as discussed in the following section.

VI. APPLICATIONS

The spectrum of applications for driver behavior classifica-
tion algorithms is very broad, from conventional systems to
advanced driver assistance systems (ADAS). Any system that
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is calibrated based on driver actions and/or vehicle response
can make use of this information to switch between modes of
operation. The following sections list some possible applica-
tions.

A. Energy Management Systems
Energy management systems (EMS) translate driver inten-

tion into power demand, and therefore energy consumption
[45]. They are key in electrified powertrains but also in
conventional ones with internal combustion engines (ICE).
By being able to predict driver’s longitudinal behavior in the
form of acceleration, the EMS can better estipulate the power
demand from the energy source, whether coming from fuel
tank or battery. The benefit of adding such information is
highlighted in systems such as the one presented in [46]. In
this work, the knowledge of the driver’s deceleration behavior
is used to maximize the usage of battery power during vehicle
operation, thus saving fuel.

B. Chassis Control Systems
Chassis control systems include electronic stability control

(ESC), anti-lock brake system (ABS), active suspensions,
electronic power steering (EPS), drive-by-wire systems, among
others. Such systems either assist the driver in safety-risk
situations (ESC and ABS) or create comfortable driving ex-
perience (EPS and drive-by-wire). In any case, they need
to be calibrated. The calibration is often different between
model versions, market, and target consumer. For instance,
a sportive vehicle will have an ESC calibration with more
flexible thresholds of safety when compared to a commercial
version of the same model.

Therefore, the chassis control systems could also be cal-
ibrated differently for different driver styles and perform
accordingly given the style identified in real-time.

C. Advanced Driver Assistance Systems
Advanced driver assistance systems (ADAS) are control

algorithms that leverage the sensors and the modules mounted
in the vehicle to assist drivers in several different driving tasks.
They include collision alert features such as forward collision
warning, lane departure warning, and pedestrian detection.
They also include active dynamic controls such as automatic
emergency braking, adaptive cruise control, lane keeping
assist, and park assist. Being able to classify drivers style
and predict they behavior is definitely an asset in predicting
collisions and giving warnings.

D. Autonomous Systems
The levels of autonomous driving vary from 0 to 5 as

defined in [47] The most common systems share driving
responsibilities with the driver (levels 1 to 4). That means
transition systems must be designed to blend human-machine
driving in all sorts of situations. In addition, the way a
driver performs the driving task is directly related to the
way he/she expects the task to be conducted by the machine.
Therefore, identifying driver style might be pivotal to create
high-performance blending systems, autonomous acceptance
and build trust.

VII. CONCLUSION AND PROSPECTS

This study has outlined guidelines for driving simulation
experiments for data aquisition in order to designing driver
behavior classification algorithms. In addition, a pilot study
was conducted to show an effective data labeling process
and ANN training. The results showed better performance
for individualized approaches (where the level of aggressive-
ness at each control is identified individually). Next projects
should incorporate such classification algorithms to actual
vehicular control systems listed in the applications sections
for evaluating the benefits of such information. For instance,
energy management systems might leverage the classification
of aggressiveness at the throttle and chassis control systems
might be designed for using the classification at the steering
wheel and brake pedal.
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motion based driving simulators,” Vehicle system dynamics, vol. 58,
no. 1, pp. 92–107, 2020.

[32] M. Bruschetta, C. Cenedese, and A. Beghi, “A real-time, mpc-based
motion cueing algorithm with look-ahead and driver characterization,”
Transportation research part F: traffic psychology and behaviour,
vol. 61, pp. 38–52, 2019.

[33] Y. Chiew, M. A. Jalil, and M. Hussein, “Kinematic modeling of driving
simulator motion platform,” in 2008 IEEE Conference on Innovative
Technologies in Intelligent Systems and Industrial Applications. IEEE,
2008, pp. 30–34.

[34] L. Bruck, S. Veldhuis, and A. Emadi, “Selection method of a driving
simulator motion system,” in 2019 IEEE Transportation Electrification
Conference and Expo (ITEC). IEEE, 2019, pp. 1–6.

[35] Vi-worldsim: A new, user-friendly, fully integrated graphic
environment that accelerates vehicle development using driving
simulators. [Accessed: 2021-09-30]. [Online]. Available: https:
//www.vi-grade.com/en/products/vi-worldsim/

[36] Vi-carrealtime: One vehicle model from concept to sign-off.
[Accessed: 2021-09-27]. [Online]. Available: https://www.vi-grade.
com/en/products/vi-carrealtime/

[37] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.
[38] D. Filev, J. Lu, K. Prakah-Asante, and F. Tseng, “Real-time driving

behavior identification based on driver-in-the-loop vehicle dynamics and
control,” in 2009 IEEE International Conference on Systems, Man and
Cybernetics. IEEE, 2009, pp. 2020–2025.
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