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Abstract 

More and more sophisticated assisted/autonomous vehicles are becoming available in 

the market. Automation levels 2 and 3 have been given for settled just a couple of years 

ago, and the path to fully autonomous car seemed to have no obstacles. In reality, OEMs 

started recently realizing that the impact of semi and/or fully robotized cars on drivers 

as well as on passengers is all but predictable. VI-grade has more than ten years expe-

rience with developing turn-key solution driving simulators, and has been working for 

more than five years on a research project to collect meaningful bio-signals from the 

driver during simulator sessions, in collaboration with the BACPIC of the Catholic Uni-

versity of Sacred Heart and the DPIA of the University of Udine. Recently, a collabo-

ration with the Human Inspired Technology Research Center of University of Padova 

allowed the extension of the assessment at physio-emotional level. 

Introduction 

There is increasing interest from major OEMs for technologies providing real-time 

monitoring of the driver psycho-physiological reactions to vehicle dynamics under di-

rect or robotized control: a) to study the robotic acceptance; b) to evaluate the difference 

between self and assisted/autonomous driving in identical scenarios; c) to evaluate the 

impact of on-the-fly setup variations of the vehicle when autonomously driven. The 

DiM150 driving simulator is ideal to replicate, in a fully immersive and deterministic 

environment, any kind of real-time vehicle dynamics under any kind of driving condi-

tions. A novel wearable device to record bio-signals and a special software to analyse 

and monitor in real-time multiple physiological parameters have been developed. All 

the bio-signals are synchronized with vehicle’s ones. Driving-induced transient varia-

tions of autonomic nervous system (ASN) modulation derived from heart rate variabil-

ity (HRV) and skin potential response (SPR) are collected letting the driver on the sim-

ulator drive through a series of tasks (separated by recovery intervals) on a variable 

highway scenario. Aim of this study was: a) to identify even minor human reactions 

differences induced by tasks during active and passive driving; b) to investigate possible 

correlations between the analysed bio-signals and the driver's subjective experience, 

including the perception of danger, the sense of presence, the in-vehicle perceived com-

fort and the quality of the driving experience, the level of engagement. 

The present work represents a qualitatively investigation of a methodology, based on 

Driving Simulator session, which could give interesting indications to the vehicle de-

velopment teams for autonomous and assisted driving about the efficiency/comforta-

bility of the driving intelligence in realistic highway driving scenarios. To prove the 

methodology, we have preliminary performed a test with 13 participants. The number 

is still not statistically significative, and the result of the present work are to be intended 
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for a) investigation and tuning of the methodology and b) for the researchers to under-

stand if, applying signal processing developed in previous works [1 – 5] and given a 

bigger number of participants, the approach could scientifically provide innovative and 

quantitative indexes for classifying autonomous driving algorithms. 

Sensor description 

The instrument block diagram is shown in Figure. 1. The ECG is acquired on three 

channels by amplifying and conditioning the differential voltages V5-V1, V4-V3 and V3-

V2. These voltages are picked using a commercial vest having wet electrodes positioned 

accordingly to Figure 1. The SPR signal is acquired by amplifying and conditioning the 

differential voltage picked between the palm and the back of each hand using Ag/AgCl 

electrodes. The reference voltage VREF is applied on the chest and on the wrists.  

As shown in Figure 1 each differential voltage (3 ECG and 2 SPR channels) is properly 

amplified and filtered; a Digital Signal Processor (DSP) acquires the amplified analog 

voltage and transmits through Universal Asynchronous Receiver Transmitter (UART) 

the acquired data to the Wi-Fi module that converts UART data into IEEE 802.11 wlan 

protocol. The device is supplied with one Li-Ion cell: a 3.7 V 1000 mAh lithium poly-

mer battery is used. The device current consumption during transmission is 200 mA, 

allowing 5 hours of continuous data acquisition. A power supply section of the circuit 

reduces the battery voltage to +3.3 V using a buck DC-DC converter; the voltage VREF 

= 1.65 V for the reference electrodes and for the instrument is provided by a linear 

voltage reference. 

SPR circuit design 

The voltages on the palm and back electrodes are high-pass filtered by a couple of pas-

sive first order filters having cutoff frequency of 0.08 Hz, with the aim of removing the 

common mode DC voltage that may be present on the skin; the input impedance of the 

instrument is 100 M, in order to assure a load error lower than 1%, assuming the skin 

impedance in the order of 1 M. The filters are connected to the instrumentation am-

plifier which amplifies the differential voltage between palm and back of the hand with 

a gain G = 160, since the expected maximum SPR pulse is in the range of 10 mV and 

must be amplified into 3.3 Vpp. Finally, the anti-alias filter has been designed as a third 

order low-pass filter with cutoff frequency of 40 Hz. 

 ECG circuit design 

The circuit topology of each channel of the ECG circuit is similar to the SPR with dif-

ferent gain and bandwidth. As in previous subsection at each channel input there are 



Assisted/Autonomous vs. Human Driving Assessment on the DiM Driving Simulator 

Using Objective/Subjective Characterization 

4 

two first order high pass passive filters. The input impedance is, as in previous subsec-

tion, 100 M in the pass band. The filters outputs are connected to the instrumentation 

amplifier, which amplifies the differential voltage relative to the channel (i.e. V5-V1, 

V4-V3 or V3-V2). The maximum range of the input differential voltage is supposed to 

be 4.5 mV, this yields to a gain G = 370 if it must be amplified into a signal with 

maximum amplitude 3.3 Vpp. The frequency behavior of the sensor is a band pass sys-

tem with gain 370 in band center, a lower cutoff frequency at 0.022 Hz with a slope of 

40 dB/dec and an upper cutoff frequency at 170 Hz with a slope of -60 dB/dec.  

DSP and WiFi data transfer 

The conditioned analog signals are sent to an analog input of the DSP. The chosen DSP 

has an on board 12 bit A/D converter operating at 8 Mega Instructions per Second; the 

sample rate has been set to 1 kSa/s. The converted data are sent via UART protocol to 

the WiFi module. The Baud Rate for data transfer has been set at 115.2 kbps in order 

to allow the data flow without crowding the channel. 

 

Figure 1: Sensor block diagram 
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Acquisition software description  

For data acquisition, the WINTAX 4 PRO software by Magneti Marelli has been used. 

It is a suite of data analysis tools developed for motorsport and it provides highly ad-

vanced real time analysis functions as well a standard interface to team’s proprietary 

software applications. Specific characteristics of the program can be found in [6]. The 

advantage of this choice is the capability of monitoring, in real time and synchronized 

both the vehicle telemetry and the biotelemetry data. Moreover, we can add real time 

processing of the data channels implementing complex functions like the features used 

in heart rate variability analysis. In Figure 2 an example is shown of real time monitor-

ing and analysis of ECG, SPR and HRV parameters dynamic time-varying changes.  

 

Figure 2: Real time monitoring of multiple physiological parameters using WINTAX 4 PRO 

Motion artifact removal on SPR signals 

The proposed algorithm is based on the assumption that the interferences due to motion 

cause an increase of the energy of the measured signals, because a first energy contri-

bution is provided by EDA pulses and a second energy contribution is related to hands 

movement. On the basis of this assumption, we first evaluate the RMS1 and RMS2 val-

ues of the spr1 and spr2 signals on a moving time window of duration of 1 s. At the ith 

sample, RMS1,2 results:  

𝑅𝑀𝑆1,2(𝑖) = √
∑ 𝑠𝑝𝑟(𝑛)1,2

2𝑖
𝑛=𝑖−𝑁+1

𝑁
 (1) 

We consider the function: 
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𝑓(𝑥) =
1

1 + 𝑒−2(𝑥−1)
 (2) 

(i) used to combine spr1 and spr2. The ith sample of (i) is obtained as 

𝛼(𝑖) = {
𝑓 (

𝑅𝑀𝑆1(𝑖)

𝑅𝑀𝑆2(𝑖)
) 𝑖𝑓 𝑅𝑀𝑆2 ≠ 0

1 𝑖𝑓 𝑅𝑀𝑆2 = 0

 (3) 

From (2) and (3), it is clear that (i) → 0 when RMS1 <<RMS2 and (i) → 1 when 

RMS1 >> RMS2. The output is finally obtained as a linear combination of spr1 and spr2: 

𝑂𝑈𝑇(𝑖) = 𝛼(𝑖) ∙ 𝑠𝑝𝑟2(𝑖) + [1 − 𝛼(𝑖)] ∙ 𝑠𝑝𝑟1(𝑖) (4) 

Intuitively, the input signal (whether spr1 or spr2) with lower energy content (within the 

moving window of duration 1 s) is considered more reliable for the output in (4). 

 

Figure 3: motion artifact removal: in lab experiments (top) and on simulator (bottom) 

Figure 3 shows the results obtained from the motion artifact removal algorithm. In top 

graph the experiments are initially conducted in laboratory, just moving the hands and 

disturbing the electrodes during acquisition; in bottom graph we acquired the signals 
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during a lap driven on a driving simulator. The simulated circuit is Jerez de la Frontera, 

the driver never drove on it before. It is evident that the algorithm follows the input with 

minimum energy when there is discordance between inputs. In both charts, it is possible 

to see that the motion artifacts are perfectly removed by the proposed algorithm.  

Test description 

A group composed by 13 healthy volunteers (age 31.4  9, 8 males and 5 females) drove 

on simulator in a highway scenario in three different phases. The first phase had the 

aim of training people and getting familiar with the simulator driving with very low 

traffic in a highway for 5 minutes, while their baseline bio-signals were acquired. In the 

second phase participants had to manually drive in a highway for a distance of 40 km 

(corresponding approximately to 20 minutes). On the path, at specified positions, where 

posed four tasks: 1) overtaking another car which is undecided on which lane to keep; 

2) brake maneuver because two trucks ahead are overtaking each other; 3) lane nar-

rowing and mandatory shift due to road works and 4) unexpected lateral wind gusts. 

Figure 4 shows the screenshots of the tasks. 

 

Figure 4: the tasks positioned on the road. (a) overtake of undecided car; (b) trucks overtak-
ing; (c) lane narrowing; (d) wind gusts.  

During the third phase, the subjects were on the same highway with an autonomous car 

which had to cope with the same tasks. In order to avoid data bias, one half of the 

volunteers did the manual drive before the autonomous, and the other half vice versa.  
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As an example, Figure 5 shows the typical behavior of heart rate and SPR signal during 

the tasks. 

 

Figure 5: heart rate and SPR signal versus the travelled distance. The effect of the tasks is 
clearly visible in both traces   

As it can be seen, during the tasks there is a significant increase of heart rate and SPR 

signal. 

Heart Rate Variability Analysis  

To validate real-time assessment obtained with the VI-grade experimental set-up in the 

Driving Simulator , the same sensor system was tested in the electrophysiology labora-

tory in the BACPIC, where the quantitative HRV analysis was also performed 
with the Kubios software (version 3.0.2), with time-varying algorithms and, 
according to the European Society of Cardiology guidelines  [7], in the time 
domain (TD), in the frequency domain (FD), and with non-linear (NL) meth-
ods. In the FD, the LF/HF ratio, calculated from LF and HF in normalized 
units, was accepted as an index of sympathovagal interaction adequate to ex-
plore autonomic modulation [8]. For comparison, 12-lead ECG was continu-
ously recorded also with Mortara Surveyor/X-Scribe 

The validation protocol consisted of five phases: implying: 1) 10-minutes base-
line supine; 2) 10-minutes Head-up tilting 70⁰ (HUTT); 3) 10-minutes supine 
recovery); 4) 20-minutes mental stress with "Mensa" preliminary Tests; 5) ex-
ercise test, at bicycle-ergometer, until muscle exhaustion. 
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Experimental results 

SPR Activity 

As a first analysis, we want to investigate if there is a significant difference in SPR 

activity from a task to another among all the subjects. To do this, since every person 

has different electrodermal activity, we evaluated the RMS value of the SPR over the 

tasks normalized with respect to the RMS evaluated on the entire trace. Figure 6 shows 

the graph with the normalized SPR for manual (red line) and autonomous (blue line) 

driving. 

 

Figure 6: Normalized SPR over the tasks for autonomous (blue line) and manual (red line). 
Error bars represent standard deviation among the subjects   

Referring to manual driving (red line), we observe that “wind” is slightly more stressful 

than the other tasks and that “trucks” is slightly less stressful than the others, although 

SPR activity is comparable in all tasks when the subject is driving manually (p>5%). 

Instead during autonomous driving (blue line), “overtake” is perceived as more danger-

ous compared with “trucks” and with “wind” (p<5%).  “Trucks” are perceived as less 

dangerous than lane narrowing, which is more dangerous than “wind”.   

As a second analysis, we wanted to evaluate if the tasks are perceived more dangerous 

in autonomous or manual drive. Performing the t-test for each obstacle, we obtain that 

“overtake” is perceived significantly more dangerous (p=0.2%) in autonomous. Alt-

hough non-significant the lane narrowing is perceived slightly more stressful in auton-

omous drive (p=8%), whereas “trucks” and “wind” are perceived in the same way 

(p=18% and 28%, respectively).  

As a third analysis, we want to investigate if the four tasks (in general) are perceived 

more stressful in autonomous or manual drive by each participant. Figure 7 shows the 

results.  
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Before providing any comment, we must point out that two different autonomous algo-

rithms were tested: an aggressive autonomous drive algorithm (subjects 1 – 6) versus a 

smooth autonomous algorithm (subjects 7 – 13).  

As it can be seen in Figure 7, there is a huge variability among the subjects. However, 

increasing the confidence of t-test to 20%, subjects 1 and 3 perceived autonomous drive 

as more dangerous than manual, subjects 7, 9, 10, 12 and 13 had the opposite reaction 

(autonomous drive was perceived less stressful than manual), whereas no difference 

was appreciable in the remaining ones.  

Particularly interesting is the fact that, for most participants the autonomous drive was 

significantly less stressful than manual when the smooth algorithm was used. Instead, 

with the aggressive autonomous algorithm, two people over six perceived autonomous 

drive as significantly more dangerous than manual. 

 

Figure 7: SPR averaged on the tasks for each subject in autonomous (blue line) and manual 
(red line). Error bars represent standard deviation among the tasks.   

Finally, we evaluated if, over the entire distance, the autonomous drive is perceived as 

less stressful than manual.  The autonomous drive resulted significantly (p<5%) less 

stressful than manual for subjects 7 – 13 (i.e. when smooth autonomous algorithm was 

used. (Figure 8). 
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Figure 8: SPR averaged on the entire distance for each subject in autonomous (blue line) and 
manual (red line).   

Real- time HRV-Sensor validation in the physiology laboratory. 

The signals quality obtained with the VI-grade sensor system was optimal for 
reproducible real-time calculation and monitoring of time-variant HRV param-
eters (Figure 9).  

 

Figure 9: example of comparison between real-time monitoring of HRV and SPR parameters 
with WINTAX 4 and and off-line time-variant HRV analysis performed with Kubios from ECG 
simultaneously recorded with the BACPIC Mortara Surveyor/X-Scribe system. 
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Baseline SPR RMS activity ranged between 0.01 and 0.8 mV, with wide inter-
individual variability. A significant (p<0.05) increment (up to 2.6 mV) was 
induced by HUTT, but not by physical exercise. SPRRMS and LF/HF had sim-
ilar trend along test session. Good agreement was found between HRV param-
eters calculated in real-time, their off-line recalculation with Kubios software 
and those obtained from Mortara telemetry. 

Questionnaire method and results 

We have considered several subjective metrics to fully understand the overall users' 

experience in described context [9 – 13]. The sense of presence, defined as the sense of 

being in a virtual environment, it is a crucial variable to assess whenever considering a 

virtual environment (VE). The better a VE is designed the higher sense of presence is 

experienced. In different studies various parameters were manipulated in order to com-

prehend their influence on the perceive sense of realism of the VEs like field of view 

increment or presence of autonomous traffic. A second relevant self-reported measure 

is the User Experience (UX), namely, “the perception and reactions of a user that derive 

from the use, or from the prediction of use of a product, system or service” (ISO, 2009). 

In the automotive research field, UX questionnaires are used to assess the interacting 

experience regarding the in-Vehicle Infotainment Systems (IVIS) or the driving simu-

lator itself. A third aspect important to evaluate is the systems usability insofar as it 

definitely affects the drivers’ experience. It is defined by Shackel (2009) as “the capa-

bility to be used by humans easily and effectively” and, like UX, its applicable both to 

IVIS and to simulators. Several questionnaires were considered. A demographic ques-

tionnaire was used to gather background information (e.g., age, gender, experience with 

virtual reality devices, driving videogames, large screens). The NASA Task Load Index 

(NASA-TLX) is a multidimensional scale index employed to assess subjective work-

load. It comprises six subscales: mental, physical demands, and temporal demands, 

frustration, effort, and performance.  The response scale ranged from low (0) to high 

(100). The performance is the only dimension that present different labels good (0) and 

poor (100).   The System Usability Scale (SUS) allows evaluating the perceived usabil-

ity of the system. The responses can be provided on a 5-point Likert scale. Sum scores 

can range between 0 and 100. A Presence questionnaire was also administered. Finally, 

three ad hoc questionnaires were administered to assess respectively: perceived diffi-

culty and danger, as well as UX. The Perceived Danger and Difficulty questionnaires 

were considered to assess the perception of drivers, in terms of and danger and diffi-

culty, considering the obstacles faced during the driving tasks. Both questionnaires 

comprised 4 items on a 5-point scale (from 1-low to 5-high). The UX questionnaire 

aimed at evaluating three dimensions: pleasantness, engagement, and utilization and 

time flow. It comprises a total of 12 items. The response could be provided utilizing a 
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5-point Likert scale. The Presence questionnaire shows a statistic difference in the pos-

sibility to act dimension, higher for the manual condition (p-value 0.023), due to the 

control exercised by participants over the vehicle. In both conditions, the realism and 

the quality of interface dimensions were close to the maximum scale. This information 

shows the high fidelity of the driving simulator used. System Usability Scale doesn’t 

show statistical differences among conditions but the results show a general very high 

usability of the driving simulator. Moreover, also the User Experience questionnaire 

shows the high quality of the virtual environment used, with the three scales, Pleasant-

ness, Engagement and use&Time flow, with results near the maximum for all of them. 

One of the main limitations of this experiment was the restricted sample size. Never-

theless, on the first half of the participants, we wanted to verify the effect of an aggres-

sive behavior of the robot driver: sudden brake actions (instead of smooth) during the 

execution of some tasks. With the second half of the participants, the robot driver acted 

much more smoothly for the same tasks. The analysis of the questionnaires on the total 

population shows some important trends that are indicated in the form of percentual 

increment between the two conditions. For a preliminary comparison with bio-signal 

data, we selected perceived Difficulty from questionnaires. Figure 10 shows the results 

of questionnaires relative to the perceived difficulty. 

Finally, NASA-TLX shows, as expected, that manual driving is more demanding in 

terms of physical demand (20%), mental demand (5%) and effort (20%). On the con-

trary, the frustration and performance dimensions show the impact of the AI aggres-

siveness on participants. In fact, in the manual condition, the performance was evalu-

ated lower by 10%. This can be explained by the perceived difficulty results in the 7-

13 pool that shows that the Wind obstacle is the most challenging in manual condition. 

This information gives us an explanation of the performance higher value for autono-

mous driving. The frustration dimensions, higher in the autonomous condition, is due 

to the errors in the behaviors of AI vehicles, that cannot be avoided without control over 

the vehicle, producing a higher value in the participants. 

Conclusions 

Our experimental set-up has proven reliable for real-time monitoring and quantitative 

estimate of driver’s instantaneous stress reaction induced by driving demands. The re-

search performed has shown some promising results for the methodology used to define 

a subjective/objective metrics to classify the effect of various robotic driving styles in 

highway realistic driving on a professional Driving Simulator, which offers a a seamless 

real/virtual human reaction. This means that, when a statistically meaningful number of 

participant data would be available, the methodology applied on the Driving Simulator 

could be extended to a real-life case. While with the former the external traffic environ-

ment is provided as deterministic, with the latter a random variation is unavoidable, 
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thus the approach is very useful to isolate the most influencing parameters. The research 

team is planning to repeat the experiment to reach at least a total of 30-40 participant in 

the upcoming months.  

 

Figure 10: Median scores of the questionnaires on the perceived difficulty.   
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